Apodictique messianique : les trois principes de la Raison

Originally posted on La recherche de l' ABSOLU:

http://www.europeana.eu/portal/record/09404/id_oai_www_wbc_poznan_pl_144807.html

(il faut Java pour le lire)

page 19 et suivantes:

la réalité de l’Absolu, la réalité en général, est la première détermination de l’essence même de l’Absolu, et le premier principe de la Raison

deuxième détermination de l’essence de l’Absolu : l’absolu est par soi même; faculté créatrice, SAVOIR (Logos, Des Wissen), instrument de l’autogénie, deuxième principe de la Raison

troisième détermination propre de l’essence de l’Absolu : fixité, inaltérabilité, l’Etre , autothésie

Ce sont les trois principes primitifs de la philosophie absolue

View original

Les théomorphoses

riverrun – the course which a river shapes and follows through the landscape + The Letter: Reverend (letter start) + (Egyptian hieroglyphic) = ‘rn’ or ‘ren’ – name + Samuel Taylor Coleridge, Kubla Khan: “In Xanadu did Kubla Khan / A stately pleasure-dome decree: / Where Alph, the sacred river, ran / Through caverns measureless to man / Down to a sunless sea.” (poem was composed one night after Coleridge experienced an opium influenced dream. Upon waking, he set about writing lines of poetry that came to him from the dream until he was interrupted. The poem could not be completed according to its original 200–300 line plan as the interruption caused him to forget the lines: “though he still retained some vague and dim recollection of the general purport of the vision, yet, with the exception of some eight or ten scattered lines and images, all the rest had passed away like the images on the surface of a stream into which a stone had been cast, but, alas! without the after restoration of the latter”).

La théorie des schémas

Grothendieck et la théorie des schémas

The category of schemes

Schemes form a category if we take as morphisms the morphisms of locally ringed spaces.
Morphisms from schemes to affine schemes are completely understood in terms of ring homomorphisms by the following contravariant adjoint pair: For every scheme X and every commutative ring A we have a natural equivalence

Since Z is an initial object in the category of rings, the category of schemes has Spec(Z) as a final object.
The category of schemes has finite products, but one has to be careful: the underlying topological space of the product scheme of (X, OX) and (Y, OY) is normally not equal to the product of the topological spaces X and Y. In fact, the underlying topological space of the product scheme often has more points than the product of the underlying topological spaces. For example, if K is the field with nine elements, then Spec K × Spec K ≈ Spec (K ⊗Z K) ≈ Spec (K ⊗Z/3Z K) ≈ Spec (K × K), a set with two elements, though Spec K has only a single element.
For a scheme , the category of schemes over has also fibre products, and since it has a final object , it follows that it has finite limits.
[edit]OX modules

Just as the R-modules are central in commutative algebra when studying the commutative ring R, so are the OX-modules central in the study of the scheme X with structure sheaf OX. (See locally ringed space for a definition of OX-modules.) The category of OX-modules is abelian. Of particular importance are the coherent sheaves on X, which arise from finitely generated (ordinary) modules on the affine parts of X. The category of coherent sheaves on X is also abelian.

EGA1 le langage des schémas

permutations du complexe {0,1,2}

Il y a 6 permutations des trois chiffres 0 , 1 et2 , donnant 6 nombres

12, 21, 102, 120, 201 et 210

Trois d’entre eux sont des nombres triangulaires (ou “valeurs secrètes” = vs) :

21 = vs 6 = 1 + 2 + 3 + 4 + 5 + 6

120 = vs 15

210 = vs 20

leur somme donne 351 qui est le 26 ème triangulaire :

21 + 120 + 210 = 351 = vs 26

la somme des trois nombres restants donne 315, avatar de 351 (composé des mêmes chiffres):

12 + 102 + 201 = 315

et la somme des 6 permutations donne 666, qui est le 36 ème triangulaire :

351 + 315 = 666 = vs 36

315 est le triple du triangulaire 105 :

315 = 3 x 105

105 = vs 14

à noter que le triangulaire 210 = vs 20 est le double du triangulaire 105

de même le triangulaire 630 = vs 35 est :

630 = vs 35 = 6 x 105 = 6 x vs 14

http://www.recreomath.qc.ca/art_relations_t_c.htm

D’autres sommes de permutations de (0,1,2) connduisent aux nombres du complexe (1,3,5) :

135 = 12 + 21 + 102

associé à

531 = 120 +  201 + 210

531 + 135 = 666

135 est aussi le triple du 9 ème triangulaire 45

135 = 3 x 45

enfin

153 = 120 + 12 + 21

est le 17 ème triangulaire, nombre évangélique de la pêche miraculeuse , il est associé à 513

513 = 102 + 210 + 201

qui est aussi le triple du triangulaire 171 :

513 = 3 x 171

171 = vs 18

153 = vs 17

153 Triangle Number